Code: 19ES1101

I B.Tech - I Semester – Regular Examinations - December - 2019

BASIC ELECTRICAL & ELECTRONICS ENGINEERING

(Common for IT, ECE, EEE)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place.

PART - A

- 1. a) State Kirchhoff's laws.
 - b) List the different types of losses occurred in a DC Machine.
 - c) Draw the Torque-sip characteristics of a Three phase induction motor.
 - d) Sketch V-I characteristics of practical diode in forward biased condition.
 - e) Define the following:
 - i) Input offset voltage

ii) Slew rate.

PART - B

UNIT – I

2.	a)	Derive the expression for the equivalent resistance of	6 M
		'n' number of resistances are connected in parallel.	
	b)	List the basic network elements. Write their volt-	6 M
		ampere relationship.	
		OR	
3.	a)	State and Explain Superposition Theorem.	6 M
	b)	Solve the equivalent resistance of resistances 4Ω , 5Ω ,	
		5Ω are connected in parallel.	6 M
		<u>UNIT – II</u>	
4.	a)	Explain the constructional details of a DC machine	
		with a neat diagram.	6 M
	b)	Describe different methods of excitations in dc motors	
		with relevant diagrams.	6 M
		OR	
5.	a)	Derive the torque equation of the DC motor.	6 M
	b)	Draw the diagram of a 2 – point starter and explain the	
		function of each component.	6 M
		<u>UNIT-III</u>	
6.	a)	Explain the necessity for conducting OC and SC tests	
		on a single phase transformer and give its outcome.	6 M
	b)	Explain the working principle of a Transformer with	
		the help of neat sketch.	6 M

OR

7.	a)	Explain the working principle of Three-phase	
		Induction motor.	6 M
	b)	Derive the expression for torque developed by an	
		Induction motor.	6 M
		UNIT – IV	
8.	a)	Explain with a neat diagram the operation of a Full wave rectifier and also draw its output wave forms.	6 M
	b)	Draw and Explain the V-I characteristics of a Zener	
		diode.	6 M
		OR	
9.	a)	Explain the formulation of depletion region in a PN	6 M
		junction.	
	b)	Compare NMOS with PMOS.	6 M
		<u>UNIT – V</u>	
10.	a)	Describe the inverting op-amp with circuit diagram	6 M
	1 \	and derive the necessary expressions.	
	b)	Explain the function of all the basic building blocks of	<i>(</i>) <i>(</i>
		an op-amp.	6 M
		OR	
11.	a)	Explain the characteristics of op-amp.	6 M
	b)	Explain the closed loop and open loop operation of an	
		op-amp.	6 M